Old Dominion University Research foundation

o 4P

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
COLLEGE OF ENGINEERING AND TECHNOLOGY

OLD DOMINION UNIVERSITY //1;,
NORFOLK, VIRGINIA 23529 A

-

S e (’/
INTERACTIVE REAL TIME FLOW SIMULATIONS

-

X%

By

I. Sadrehaghighi, Graduate Research Assistant

and

S. N. Tiwari, Principal Investigator

Progress Report
For the period ended September 30, 1990

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NCC1-68

Dr. Robert E. Smith, Jr., Technical Monitor
ACD-Computer Applications Branch

K - FLU N91-10223
(NASA—CQ—187325) INTFRACTIVE REQL‘T[M;_FEUH
STMULATIGONS Proqaress Renort,uogr:?a zg ;n
: int Nive. , »
30 Sep. 1990 (Nid Domingon e on gz ncl 6

e/ 3 0310024

October 1990

o -4

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS
COLLEGE OF ENGINEERING AND TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

INTERACTIVE REAL TIME FLOW SIMULATIONS

By

I. Sadrehaghighi, Graduate Research Assistant
and

S. N. Tiwari, Principal Investigator

Progress Report
For the period ended September 30, 1990

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NCC1-68

Dr. Robert E. Smith, Jr., Technical Monitor
ACD-Computer Applications Branch

Submitted by the
0l1d Dominion University Research Foundation

P.O0. Box 6369
Norfolk, Virginia 23508-0369

October 1990

ABSTRACT

INTERACTIVE REAL TIME FLOW
SIMULATIONS

Ideen Sadrehaghighi
Surendra N. Tiwari

An interactive real time flow simulation technique is developed for an un-
steady channel flow. A finite-volume algorithm in conjunction with a Runge-Kutta
time stepping scheme has been developed for two-dimensional Euler equations. A
global time step has been used to accelerate convergence of steady-state calculations.
A raster image generation routine has been developed for high speed image transmis-
sion which allows user to have direct interaction with the solution development. In

addition to theory and results, the hardware and software requirements are discussed.

iii

ACKNOWLEDGMENTS

This is a progress report on the research project "Numerical
Solutions of Three-Dimensional Navier-Stokes Equations for
Closed-Bluff Bodies" for the period ended September 30, 1990.
Specific efforts during this period were directed in the area of
"Interactive Real Time Flow Simulations."

This work was supported by the NASA Langley Research Center
through Cooperative Agreement NCC1-68. The cooperative agreement
was monitored by Dr. Robert E. Smith, Jr., of the Analysis and
Computation Division (Computer Applications Branch), NASA Langley

Research Center, Mail Stop 125.

iv

TABLE OF CONTENTS

page
A S R A T o e iii
ACKNOWLEDGEMENTS .o e iv
TABLE OF CONTENTS ... e v
LIST OF FIGURES .. e e vi
LIST OF SYMBOLS ... e vii
Chapter
L INTRODUCTION o e e e e e 1
2. GRID GENERATION .. e 3
3. EQUATIONS OF MOTION AND METHOD OF SOLUTION 5
3.1 Governing Equations EEEETETRERRRTRPRTS 5
3.2 Finite-Volume Scheme 6
3.3 Time-Stepping Scheme i 7
3.4 Bondary Conditions i 8
4. SOFTWARE AND HARDWARE CONSIDERATIONS 9
5. RESULTS AND DISCUSSIONS 12
R R N S e e e e e e I8
APPENDIX A: RASTER IMAGE GENERATION ROUTINE: PLOTD 19

LIST OF FIGURES

2.1 Stretching transformation (7 =0) ..ot 4
2.2 Computational grid for a channel flowo 4
4.1 CRAY and UtraNet Graphics Display Device 11
4.2 High performance multicomputer network 11
5.1 Pressure contours for different iterations (¢ =0.8 , Moo =2.0) 14
5.2 Mach number contours for different iterations (¢ = 0.8 , M, =2.0) 15
5.3 Pressure contours for different iterations (o = 15.0 , Moo =2.0) 16
5.4 Mach number contours for different iterations (a = 15.0 , M, =2.0) 17

vi

LIST OF SYMBOLS

vector of conservative variables

flux vectors for coordinate directions
physical coordinates

height of channel

computational coordinates

velocity components in x and y directions
static pressure

free stream Mach number

density

total energy

energy per unit volume

cell area

ratio of specific heats

angle of attack

stretching parameter

clustering parameter

boundary-layer thickness

vii

Chapter 1
INTRODUCTION

Since an interactive design process is one of the ultimate goals of Computa-
tional Fluid Dynamics (CFD), real time flow simulation with direct user interaction
is an ideal approach in achieving this goal [1]*. This process requires a supercomputer
with vast amount of memory, an extremely high bandwidth communication network
and highly capable graphic workstations. Even with today’s rapid advances in the
supercomputer developments, some of the components are not fast or large enough
for a realistic three-dimensional problem. However, real time simulation of medium
size two-dimensional flow problems (Euler equations) are possible today.

Accurate simulations are critical to the development and understanding
of highly unsteady flow. For the reasons outlined above, a simple unsteady two-
dimensional channel type flow has been studied here. The relative motion of the
shocks and other strong gradients have been examined as the solution being com-
puted. Once the solution has been examined, the user will inform the flow solver
to take different action or to continue on the existing course. This requires large
amount of data to be examined by the user, and small amount of information in
form of instruction, to be send back to the mainframe computer. Consequently, this
procedure requires a fast mainframe computer, an extremely fast network for data
communication and a relatively fast workstation.

The computational process is initiated on the mainframe computer under

* The numbers in brackets indicate references.

interactive control by the user at a workstation. The equations of motion are in-
tegrated step by step on the mainframe computer. The choice of a variable to be
visnalized is instructed from the workstation and a separate rasterization program
compntesa araster image of the variable. 'I'he image is tranamitted over the conmuni-
cation link to a raster display device to be viewed by the user. Images are continuously
created, transmitted, and if desired, stored on a recording device. Having viewed the
images on the raster display device, the user responds. If mainframe’s computational
and communication rates are sufficient, a real time interaction can be achieved. This,
of course , depends on the size of the problem under investigation (i.e. number of

grid points, equations of motion, and solution technique) .

Chapter 2
GRID GENERATION

A suitable transformation for a channel type flow can be obtained using an
analytical function. A simple case would be Lo use uniform spacing in x direction.

For y direction, the spacing is obtained by (2],

_ BB+ 1)/(B - 1T — f+ 29 @)
(20 + 1)(L+[(8 + D)/ (8~ D)F=/0-m) |

where h is the height of channel and n is the parameter which controls the grid
clustering in y direction. Variable § corresponds to normal coordinate in the com-
putational domain. The stretching parameter, 3, is related approximately to the

non-dimensional boundary layer thickness (6/h) by

)7, 0<%<1 (2.2)

> o

p=(1-

The amount of stretching for various values of 6/h is illustrated in Fig. 2.1.
For this transformation, if 7 = 0 the mesh will be refined near y = h , whereas, if
n = 0.5 the mesh will be refined equally near y = 0 and y = h . For this study, values

of 7 = 0.5 and f= 0.30 been chosen and the resulting grid is shown in Fig. 2.2.

«

1.0

0.9

0.8

0.7

0.6

0.9

0.4

0.3

0.2

1]
1.0 -
0.5 | 1.414
0.2 |1.v9s
0.2 1.118
0.) 1.054
.05 1.026
.01l 1.005
.001 { 1, 0005

,01
.001

0.0 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y/h

‘Fig. 2.1 Stretching transformation (= 0)

Fig. 2.2 Computational grid for a channel flow

Chapter 3

EQUATIONS OF MOTION AND
METHOD OF SOLUTION

3.1 Governing Equations

The governing equations are time-dependent Euler equations [3]. The un-
steady two-dimensional equations for a compressible perfect gas can be written in an

integral form for a region © with boundary 6Q as

%//{)Qdmdy+/m(de—Gd:c) =0 (3.1)

where vectors Q , F , and G, are

p gu ‘ pU |
|| o | put+p _| pw
Q= ov F = puv G = 0?4 p (3.2)
FE (E+ plu (E+p)v

The total energy, E, is defined using the ideal gas relation as

E= (731) +%p(u2+v2) (3.3)

where v is the ratio of specific heats.

3.2 Finite-Volume Scheme

The governing equations in the integral form are applied to an arbitrary
gquadrilateral and the line integrals are approximated with the midpoint rule. The

discretized result is

%(Sg'jQi,j) +£Qi;=0 (34)
where /£ is defined as the spatial discretization operator and S;; is area of the cell.
The components of Q;; represent the cell-averaged quantities and obtained by the
mean values of the fluxes crossing the cell.

In order to overcome the instabilities associated with central differencing, a
fourth order dissipative model is used. In this study, the dissipative model developed
by Jameson, Schmidt, and Turkel [4] has been used. The finite-volume formulation,

Eq. (3.4) is now expressed as

d
E(Sl'|le',.f) +4Qi; - DQ;; =0 (3.5)

where D represents the artificial dissipation operator. This operator can be written

in the following way

DQi; = D:Qi; + DyQi; (3.6)

where D, Q; ; and D,Q; ; are the contributions from each of the coordinate directions.

In conservation form

D.Q;; = diy1y25 — dic1y2; (3.7)
DyQi; =dijs1y2 — dijo1y2 (3.8)

where the terms on the right hand side have the form

+1 2,
d*’+1/2.:' = /J[51)1/21(.+1, Q'J) .+1/2J(Q-+2J 3Q-+l +3Q:J Qi-l,j)]

(3.9)
The coefficients (2 and ¢() are determined from the pressures gradients as
oo | Pt = 2P + Pisyj | (3.10)
Y Py + 2P+ Py ‘
5;('1)1/2,1' = aPmaz(vigr,) (3.11)
4
t(+)1/2: = maz(0, (a¥) — 5-(1)1/2) (3.12)

where typical values of the constants &(? and o are 1 and zL, respectively.

256

3.3 Time-Stepping Scheme

A modified four stage Runge-Kutta time stepping scheme was used to ad-
vance the solution in time. Due to its explicit character, this scheme is very simple

and flexible . Hence, it is ideal for interactive computation purposes. At time level n,

Q© = Qi (3.13)
QW =Q© - a,AtRQO (3.14)
Q® = QO — a,AtRQM (3.15)
Q® = Q@ — o;AtRQWY (3.16)
QW = Q©® — AtRQ® (3.17)
Q*+) — QW (3.18)

where on the (q+1)st stage

RQW = %(Lq(q) — DQ®) (3.19)

and

(3.20)

3.4 Boundary Conditions

The boundary conditions are implemented by applying a slip velocity con-
dition at the solid walls [5]. Also, the stagnation enthalpy is assumed to be constant

along the solid surface and equal to that of the free-stream, i.e.,

1
hg = h+§(u2+v2)= h!oo (321)
For solid wall, (f¢)yan, the free-stream values(u=1 and v=0) are used, i.c.,

1
(ht)watt = vers. + 3 (3.22)

Because of the supersonic nature of the flow, the outflow boundary is determined by

extrapolating from interior points.

Chapter 4

SOFTWARE AND HARDWARE
CONSIDERATIONS

The implemented software and hardware are discussed in [1]. Currently,
the mainframe computer is a CRAY-2 which generally performs at 200-250 MFLOPS
(Million Floating Point Operations Per Second) . The mainframe is connected to
UltraNet Graphics Display Device (UGDD), which is a network based frame buffer
through a High-Speed Channel (HSC) . The channel can support transfer rates up
to 100 MBytes/sec. The frame buffer is a high-speed display system supporting high
resolution monitors. The UGDD contains two memory arrays. While one array is
displayed, the other is updated over the network. The user determines which array
to display and controls the situation over the network. The UGDD supports a single
user at a time and may be used to display color images at animation rates. The
frame buffer can display RGB (Red, Green, Blue) images up to 1280 pixels ho;'izon-
tally by 1024 Scan-lines vertically. Figure 4.1 shows a pictorial representation of the
hardware setup for a single hub (UltraNet 1000). Figure 4.2 shows the configiration
using a CRAY supercomputer in conjunction with several mini-supercomputers and
workstations.

There are several pieces of software required for a real time CFD simulation.
They are : a grid generator, a flow solver, an image rasterizer, and an image manip-
ulator. Each software component has been written and applied separately. However,

for a true interactive process, these softwares must be integrated into one working

10

unit or be presented in parallel.
With the current CFD technology, it is possible to solve the Euler equations
at 16 pace [6]. For a grid of 70 X 30, it will take one second for 62

{gridpoints)=(iterations)

iterations. This will result in 62 frames per second.

A rasterization program called PLOTD is developed to producc a raster
image from the solution. A complete listing of the source code is provided in Ap-
pendix A. This software converts a specified variable defined on a surface to a raster
RGB images (1024 X 768). The required CPU time for this step depends on the
size of the grid and the complexity of the image. This step may take from few mi-

croseconds to a couple of seconds. Consequently, the image must not be very complex.

CRAY

CRAY RGB Monlior

RGB Monlior

Iig. 4.1 CRAY and UltraNet Graphics Display Device

UhraNet 1000

SR
UivaBlue

frnlicd
BRI
Bl

Workstalions

Fig. 4.2 Iigh performance multicomputer network

Chapter 5
RESULTS AND DISCUSSION

The unsteady two-dimensional Euler equations are solved for a channel flow.
In order to test the flow solver, the solution has been obtained by keeping all the flow
parameters constant. The results are satisfactory and the shocks are captured very
accurately. Figures 5.1 through 5.4 show pressure and Mach number contours at
different iterations for different angles of attack. A more comprehensive test can be
achieved by changing one of the flow conditions as the solution evolves. An idcal and
relatively simple case would be rotating the angle of attack. The angle of attack can

be expressed as

O = Qmin + (Umar — Umin)Sin(wr) (5.1)

where anin and a,,,, are intial and final angles of attack, and w is the Spf?(iiﬁcd
frequency. Initially, the solution starts with a uniform flow everywhere (impulse
start). At this initial stage of the computation, none of the flow features has heen
altered. This, in fact, is the continuation of the case described earlier for testing the
flow solver. After some iterations, once the flow features are established, the angle
of attack is allowed to rotate using Eq. (5.1). It takes between 3-5 cycles for flow
properties to reach a cyclic behavior.

Each frame takes at least 0.5 second of CPU time, which is relatively long
time for a multiuser machine. One way to alleviate this is to take advantage of the

parallel capability of the CRAY 2. This can be accomplished by allowing the flow

12

13

solution, rasterization and image transmission to be performed on different processors.

after 105 iterations

14

SN __

alter 55 ilerulions
= IRK%’Q‘{

ufter 25 iterntions

o
Iig. 5.1 Pressure contours for different iterations (a = 0.8 , M, = 2.0)

11

after 55 iterations

after 25 iterations

Fig. 5.2 Mach number contours for different iterations (a = 0.8°, M., = 2.0)

G50)
\\\ ”JJZ/

alter 763 iterations (conv«.rg.d)

. // \JJJJ%? _

after 305 ilerations

after 45 iterations

Fig. 5.3 Pressure contours for djfferent iterations (a = 15.(5,, My = 2.0)

alter 305 iteratioﬁs

N

after 95 ilerations

aller 45 iterations

Fig. 5.4 Mach number contours for different iterations (o = 15..0 y Moo = 2.0)

REFERENCES

. Abolhassani, J. S. and Everton, E. L., “Interactive Grid Adaption ,” The Third
International Congress of Fluid Mecha.mcs Vol. I, January 1990, pp. 309-317.

. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid

)%%ghmug__@&d_ﬂg@j,_ﬁ_@nﬂg[Hemlsphere Pubhshmg Corporatlon New York,
1984

3. Lavante, E. V., Bruns, R. L., Sanetrik, M. D., and Lam, T., “ Numerical Analysis

of Flow "About @ Total Temperature Sensor” 'AIAA Journal March 1989, pp 692
- T14.

. Jamson, A., Schmidt, W. and Turkel, E., “Numerical Solutions of the Eu-
ler Fquatwns By Finite- Volume Using Runge Kutta Time-Stepping Schames,”
ATAA Paper 81-1259, June 1981.

. Hoffmann, K. A., Computational Fluid Dynamics For Engineers, Engincering
Education System, Austin, TX ,1989.

. Rumsey, C. L. and Anderson, W. K., “Some Numerical and Physical Aspccts of
Unsteady Navier-Stokes Computatzons Qver Airfoils Using Dynamic Meshes,”
AIAA Paper 88-0329, January 1988.

18

APPENDIX A

RASTER IMAGE GENERATION ROUTINE : PLOTD

Following subroutines are developed for a raster image generation. Main
arguments are defined as:

X,y = grid coordinates

d = flow variable to be contoured

n = number of points in x direction

m = number of points in y direction

is,ie = desired start and end points for contouring in I-direction
js,je = desired start and end points for contouring in J-direction
nnc = number of contour levels

19

nanan Q

an

100

150

20
subroutine conplt{(x,y,d,m,n,is,ie,js, je,a,b,nnc)
PARAMETER (NPMAX=10000, NPSMAX=100, NSMAX=100)
dimension x(m,n),y(m,n),d(m,n)

common /extrem/ xmin, Xmax, ymin, ymax, dmin, dmax
real xmin, Xmax, ymin, ymax, dmin, dmax

common /maping/ scalex, ofsetx, scaley, ofsety, scaled, ofsetd
real scalex, ofsetx, scaley, ofsety, scaled, ofsetd

dimension ix1l(npsmax,3), iyl(npsmax,3)
dimension ix2(npsmax,3), iy2(npsmax,3)

logical ind(npsmax,2), flag(npsmax)

contour plot
written by: Eric L. Everton & Jamshid S. Abolhassani

nc=abs(nnc)
check for zero range
if (dmax.ne.dmin) then
compute delta
delf=(dmax-dmin)/float(nc)
else
zero range, issue error message and stop

write(*,*) “maximum and minimum are equal’
stop

endif

set starting contour level
cl=dmin

set error flag to false

do 100 i=ism,iel
flag(i)=.false.

continue

plot contours

continue

checks for contour level out of range

Q

250

21

if(cl.lt.dmin) go to 150

if(cl.gt.dmax) return

convert contour level to look up table (lut) index
icolor=cl*scaled+ofsetd

checks for lut index out of range
if(icolor.lt.int(a)) icolor=int(a)
if(icolor.gt.int(b)) icolor=int(b)

set current lut index (color)

call ufbcol(icolor)

set do loop end controls

iel=ie-1
jel=je-1

upper triangle do loop
do 200 j=js, jel
reset line plot flags

do 250 k=1,2
do 250 i=is,iel

ind(i,k)=.false.

continue

vectorized do loop

do 300 i=is,iel

initialize temporary variables

x1=x(i ,j
yl=y(i ,j
fl=d(i ,j
x2=x(1i+1,
y2=y(i+1,j
£2=d(i+1, j
x3=x(1i+1,3+1)
y3=y(i+1l,j+1)
£3=d(i+1, j+1)

R S e g

check to see if contour line intersects this triangle

if ((cl.le.max(f1,f2,f3)).and.(cl.ge.min(f1,£f2,f3))) then

O

00 a0n (9]

an

check to see if contour line intersects point 1
if (cl.eq.f1l) then
check to see if contour line intersects point 2
if (cl.eq.£f2) then
check to see if contour line intersects point 3
if (cl.eq.f£f3) then
contour line intersects all three verticies

ix1(i,1l)=ofsetx+scalex*xl
iyl(i,l)=ofsety+scaley*yl
ix2(1i,1)=ofsetx+scalex*x2
iy2(i,1)=ofsety+scaley*y2
ind(i,1)=.true.

ix1(i,2)=ofsetx+scalex*x2
iyl(i,2)=ofsety+scaley*y2
ix2(i,2)=ofsetx+scalex*x3
iy2(i,2)=ofsety+scaley*y3
ind(i,2)=.true.

ix1(i,3)=ofsetx+scalex*x3
iyl(i,3)=ofsety+scaley*y3
ix2(i,3)=ofsetx+scalex*xl
iy2(i,3)=ofsety+scaley*yl

else
contour line intersects point 1 and point 2

ix1(i,l)=ofsetx+scalex*xl
iyl(i,1)=ofsety+scaley*yl
ix2(i,l)=ofsetx+scalex*x2
iy2(i,1)=ofsetyt+scaley*y2
ind(1i,1)=. true.

endif

contour line did not intersect point 2
check to see if contour line intersects point 3

else if (cl.eq.f3) then
contour line intersects point 1 and point 3

ixl(i,1l)=ofsetx+scalex*xl
iyl(i,1)=ofsety+scaley*yl
ix2(i,1)=ofsetx+scalex*x3
iy2(i,1)=ofsety+scaley*y3
ind(i, 1)=. true.

else

anoaan

aaan

aaaa

[INe)

Q

anoaan

aaaa

23

check to see if contour line intersects edge
between point 2 and point 3

if ((cl-£f2)*(cl-f3).le.0.) then

contour line intersects point 1 and
edge between point 2 and point 3

ix1(i,1)=ofsetx+scalex*xl
iyl(i,1l)=ofsety+scaley*yl
ix2(i,l1)=ofsetx+scalex* (x2+(x3-x2)*(cl-£2)/(£3-£2))
iy2(i,1)=ofsetytscaley*(y2+(y3-y2)*(cl-£2)/(£3-£2))
ind(i,1l)=.true.
endif
endif

contour line did not intersect point 1
check to see if contour line intersects point 2

else if (cl.eq.f2) then
contour line intersects point 2

ixl(i,l)=ofsetx+scalex*x2
iyl(i,1)=ofsety+scaley*y2

check to see if contour line intersects point 3
if (cl.eq.£f3) then
contour line intersects point 2 and point 3
ix2(i,l)=ofsetx+scalex*x3
iy2(i,1l)=ofsety+scaley*y3
ind(i,1)=.true.

else

check to see if contour line intersects edge
between point 1 and point 3

if ((cl-fl)*(cl-£3).1e.0.) then

contour line intersects point 2 and
edge between point 1 and point 3

ix2(i,1)=ofsetx+scalex*(x1+(x3-x1)*(cl-£f1)/(£3-£f1))
iy2(i,l)=ofsety+scaley*(yl+(y3-yl)*(cl-£f1)/(£3-£f1))
ind(i,1l)=.true.

endif

endif

QQ

aagaa

aaoaaan aaQ0a0an anoaan aoaa0a 0 aaaa

OaQa00aan

O Q

24

check to see if contour line intersects point 3
else if (cl.eq.f3) then

check to see if contour line intersects edge
between point 1 and point 2

if ((cl-fl)*(cl-£f2).le.0.) then

contour line intersects point 3 and
edge between point 1 and point 2

ix1(i,1)=ofsetx+scalex*x3

iyl(i,l)=ofsety+scaley*y3
ix2(1i,1)=ofsetx+scalex*(x1+(x2-x1)*(cl-f1l)/(£f2-£f1))
iy2(i,1)=ofsety+scaley*(yl+(y2-yl)*(cl-£f1)/(£2-f1))
ind(i,1)=.true.

endif
else

contour line does not intersect any of the verticies
check to see if contour line intersects edge
between point 2 and point 3

if ((cl-£f2)*(cl-£3).le.0.) then

contour line intersects edge
between point 2 and point 3

ix1(i,1)=ofsetx+scalex*(x2+(x3-x2)*(cl-£f2)/(£3-£2))
iyl(i,1l)=ofsety+scaley*(y2+(y3-y2)*(cl-£2)/(£3-£2))

check to see if contour line intersects edge
between point 1 and point 3

if ((cl-fl)*(cl-£f3).1le.0.) then

contour line intersects edges
between point 2 and point 3 and
between point 1 and point 3

ix2(i,l)=ofsetx+scalex*(x1+(x3-x1)*(cl-£f1)/(£3-£f1))
iy2(i,1)=ofsety+scaley*(yl+(yd-yl)*(cl-£f1)/(£3-f1))
ind(i,1)=.true.

contour line does not intersect edge

between point 1 and point 3

check to see if contour line intersects edge
between point 1 and point 2

else if ((cl-f1l)*(cl-£f2).le.0.) then

contour line intersects edges

Q

aaoa0aoa aa0aa a0oaa aaoaaaan Q

e}

Q

9}

aaoaa

25
between point 2 and point 3 and
between point 1 and point 2
ix2(i,1)=ofsetx+scalex*(xl+(x2-x1)*(cl-f1)/(£2-£f1))
iy2(i,1)=ofsety+scaley*(yl+(y2-yl)*(cl-£f1)/(£2-£1))
ind(i,1l)=.true.
must be a problem
else
set error flag
flag(i)=.true.
endif
contour line does not intersect edge
between point 2 and point 3
check to see if contour line intersects edge
between point 1 and point 3

else 1f ((cl-fl)*(cl-£f3).le.0.) then

contour line intersects edge
between point 1 and point 3

ixl(i,l)=ofsetx+scalex*(x1+(x3-x1)*(cl-f1)/(£3-f1))
iyl(i,l)=ofsety+scaley*(yl+(y3-yl)*(cl-£f1)/(£3-£f1))

check to see if contour line intersects edge
between point 1 and point 2

if ((cl-f1l)*(cl-£f2).1le.0.) then
contour line intersects edges
between point 1 and point 3 and
between point 1 and point 2
ix2(1i,1)=ofsetx+scalex*(x1+(x2-x1)*(cl-£f1)/(£2-£f1))
iy2(i,1)=ofsety+scaley*(yl+(y2-yl)*(cl-£fl1)/(£f2-£f1))
ind(i,1)=.true.

must be a problem

else
set error flag
flag(i)=.true.

endif

contour line did not intersect edges
between point 2 and point 3 and
between point 1 and point 3

nNaoaaaa aa

Q

26

check to see if contour line intersects edge
between point 1 and point 2

else if ((cl-fl)*(cl-f2).le.0.) then
contour line only intersects edge
between point 1 and point 2
must be a problem
get error flag
flag(i)=.true.
endif
endif
endif
300 continue
do 350 i=is,iel
check to see if an error occured
if (flag(i)) then

igssue error message and stop

write(*,*) “There is something fishy about conplt!”’
stop

endif
350 continue

do 360 i=is,iel

check to see if line is to be plotted

if (ind(i,1)) then
plot a single line
call ufblin(ix1(i,1),41y1(i,1),1x2(1.1),1iy2(i,1))
check for more lines
if (ind(i,2)) then

plot two more lines

call ufblin(ix1(i,2),iy1(1,2).i%x2(4,2),iy2(1,2))
call ufblin(ix1(i,3),1y1(1,3).1%x2(1,3),iy2(1.3))

endif

360

200

450

endif

continue

continue

lower triangle do loop
do 400 j=js, jel

reset line plot flags

do 450 k=1,2
do 450 i=is,iel

ind(i,k)=.false.
continue
vectorized do loop
do 500 i=is,iel

initialize temporary variables

x1=x(i ,j)
yl=y(i ,3)
fl1=d(i ,3)

x3=x(i+1l,j+1)
y3=y(i+l,j+1)
£3=d(i+1,j+1)
xX4=x(i ,Jj+1)
y4=y(i ,3+1)
f4=d(i ,j+1)
check to see if contour line intersects this triangle
if ((cl.le.max(f1l,£3,f4)).and.(cl.ge.min(f1,£3,£4))) then
check to see if contour line intersects point 1
if (cl.eq.fl) then
check to see if contour line intersects point 3
if (cl.eq.£3) then
check to see if contour line intersects point 4
if (cl.eq.f4) then
contour line intersects all three verticles
ixl(i,l)=ofsetx+scalex*xl

iyl(i,l)=ofsety+scaley*yl
ix2(i,1)=ofsetx+scalex*x3

27

Q

9] aa aaaaq 0

aaaan

aa0aan

28

iy2(i,1)=ofsetyt+scaley*y3
ind(i,1)=.true.

ix1(i,2)=ofsetx+scalex*x3
iyl(i,2)=ofsety+scaley*y3
ix2(i,2)=ofsetx+scalex*x4
iy2(i,2)=ofsetyt+scaley*y4
ind(i,2)=.true.

ix1(i,3)=ofsetx+scalex*x4
iyl(i,3)=ofsety+scaley*y4d
ix2(i,3)=ofsetx+scalex*xl
iy2(i,3)=ofsetyt+scaley*yl

else

contour line intersects point 1 and point 3

ixl(i,l)=ofsetx+scalex*xl
iyl(i,l)=ofsety+scaley*yl
ix2(i,l)=ofsetx+scalex*x3
iy2(i,l)=ofsety+scaley*y3
ind(i,1)=.true.

endif

contour line did not intersect point 3

check

to see if contour line intersects point 4

else i1f (cl.eq.f4) then

contour line intersectm point 1 and point 4

ixl1(i,1)=ofsetx+scalex*xl
iyl(i,1)=ofsetyt+scaley*yl
1x2(1i,1)=ofsetx+scalex*x4
iy2(i,l)=ofsety+scaley*y4
ind(i,1)=.true.

else

check to see if contour line intersects edge
between point 3 and point 4

if

((cl-f3)*(cl-f4).1le.0.) then

contour line intersects point 1 and
edge between point 3 and point 4

ix1(i,l)=ofsetx+scalex*xl

iyl(i,l)=ofsety+scaley*yl
ix2(1i,1)=ofsetx+scalex*(x3+(x4-x3)*(cl-£3)/(£f4-£3))
iy2(i,l)=ofsety+scaley*(y3+(y4-y3)*(cl-£3)/(£4-£3))
ind(i,1)=.true.

endif

endif

Qaa0aao0

aQ

aaoaan 9]

0n0aaq

a

aa0aan

aaaan

29

contour line did not intersect point 1
check to see if contour line intersects point 3

else 1if (cl.eq.£f3) then
contour line intersects point 3

ixl(i,1)=ofsetx+scalex*x3
iyl(i,1l)=ofsety+scaley*y3

check to see if contour line intersects point 4
if (cl.eq.f4) then
contour line intersects point 3 and point 4
ix2(i,l)=ofsetx+scalex*x4
iy2(i,1)=ofsety+scaley*y4d
ind(i,1)=.true.

else

check to see if contour line intérsects edge
between point 1 and point 4

if ((cl-fl)*(cl-f4).le.0.) then

contour line intersects point 3 and
edge between point 1 and point 4

ix2(i,1l)=ofsetx+scalex*(x1+(x4-x1)*(cl-£f1)/(£4-£f1))
iy2(i,l)=ofsety+scaley*(yl+(y4-yl)*(cl-f1)/(£f4-£f1))
ind(i,1)=.true.
endif
endif
check to see if contour line intersects point 4

else 1f (cl.eq.f4) then

check to see if contour line intersects edge
between point 1 and point 3

if ((cl-fl)*(cl-£3).le.0.) then

contour line intersects point 4 and
edge between point 1 and point 3

ixl(i,l)=ofsetx+scalex*x4
iyl(i,1)=ofsety+scaley*y4
ix2(i,1)=ofsetx+scalex*(x1+(x3~-x1)*(cl-£f1)/(£3-£f1))
iy2(i,1l)=ofsety+scaley*(yl+(y3d-yl)*(cl-f1)/(£3-£1))
ind(i,1l)=.true.

Q

a0 aa aaanan aaaaan

aaonoaa

naoaanaan

aaoaaan

30

endif
else

contour line does not intersect any of the verticies
check to see if contour line intersects edge
between point 3 and point 4

if ((cl-£f3)*(cl-f4).le.0.) then

contour line intersects edge
between point 3 and point 4

ix1(i,1l)=ofsetx+scalex*(x3+(x4-x3)*(cl-£3)/(£4-£3))
iyl(i,l)=ofsety+scaley*(y3+(y4-y3)*(cl-£3)/(£4-£3))

check to see if contour line intersects edge
between point 1 and point 4

if ((cl-fl)*(cl-f4).le.0.) then

contour line intersects edges
between point 3 and point 4 and
between point 1 and point 4

ix2(i,l)=ofsetx+scalex*(x1+(x4-x1)*(cl-£f1)/(£f4-£1))
iy2(i,1l)=ofsety+scaley*(yl+(y4-yl)*(cl-£f1)/(£f4-£f1))
ind(i,1)=. true.

contour line does not intersect edge

between point 1 and point 4

check to see if contour line intersects edge

between point 1 and point 3

else if ((cl-f1)*(cl-£3).1le.0.) then
contour line intersects edges
between point 3 and point 4 and
between point 1 and point 3
ix2(i,1l)=ofsetx+scalex*(x1+(x3-x1)*(cl-£f1)/(£3-£1))
iy2(i,1)=ofsety+scaley*(yl+(y3-yl)*(cl-£f1)/(£3-£1))
ind(i,1l)=.true.

must be a problem

else
set error flag
flag(i)=.true.

endif

contour line does not intersect edge

aa0an Qaaaa an0aao

anaaan

aaoaaaan aagaagaoaan Q

Q

31

between point 3 and point 4
check to see if contour line intersects edge
between point 1 and point 4

else if ((cl-fl)*(cl-£f4).1le.0.) then

contour line intersects edge
between point 1 and point 4

ix1(i,1l)=ofsetx+scalex*(x1+(x4-x1)*(cl-£f1)/(£f4-£f1))
iyl(i,l)=ofsetyt+scaley*(yl+(y4-yl)*(cl-f1)/(£f4-£f1))

check to see if contour line intersects edge
between point 1 and point 3

if ((cl-fl)*(cl-£3).1e.0.) then
contour line intersects edges

between point 1 and point 4 and
between point 1 and point 3

ix2(1,1)=ofsetx+scalex*(x1+(x3-x1)*(cl-£f1)/(£3-£1))
iy2(i,l)=ofsety+scaley*(yl+(y3-yl)*(cl-£f1)/(£3-£1))
ind(i,1)=.true.
must be a problem
else
set error flag
flag(i)=.true.
endif
contour line did not intersect edges
between point 3 and point 4 and
between point 1 and point 4

check to see if contour line intersects edge
between point 1 and point 3

else if ((cl-f1)*(cl-£f3).1le.0.) then
contour line only intersects edge
between point 1 and point 2
must be a problem
set error flag

flag(i)=.true.

endif

endif

endif

32

500 continue

c
do 550 i=is,iel
c
c check to see if an error occured
c
if (flag(i)) then
c
c issue error message and stop
C
write(*,*) "There is something fishy about conplt!’
stop
C
endif
c
550 continue
c
do 560 i=is,iel
c
c check to see if line is to be plotted
c
if (ind(i,1)) then
o]
c plot a single line
c
call ufblin(ix1(i,1),iy1(i,1),ix2(1,1),iy2(1i,1))
c
c check for more lines
c
if (ind(i,2)) then
c
c plot two more lines
c
call ufblin(ix1(i,2),iy1(1,2),1ix2(1,2),1iy2(1i,2))
call ufblin(ix1(i,3),1iy1(1,3),ix2(1i,3),1iy2(i,3))
C
endif
c
endif
c
560 continue
c
400 continue
c
c increment contour level
c
cl=cl+delf
c
c plot contours
C
go to 150
c
end

Chhhdhhkkhkdhdddhdhdbhhkhhhhkhdhhdbhhhh kbbb bdhbhhdhhhhdhhhkhhhhbrhtrdhhihhkhi

subroutine fminmax(f, fmin, fmax,i8,1e,js,je,m,n,iflag)
c

33

dimension f(m,n)

c
data eps/lel4d/
o]
c check to reset minimums and maximums
c
if(iflag.eq.0) then
c
fmin=eps
fmax=-eps
c
end if
c
do 100 j=js, je
do 100 i=is,ie
c
c check to reset minimums and maximums
c
fmax=amax1l(£f(i, j), fmax)
fmin=aminl(£(i,j), fmin)
c
100 continue
c
return
end
C
Chhhhhhkdhdhhkhhhhhhhhkdhhhrhkhhhhkrkrhrb bbb rd b bddhb bbbk bbbk hh bbb dbhdhrhk kb hdh
*
C
subroutine getf(td, tu,tv,te,dd,m,n,ivar)
c
dimension td(*), tu(*), tv(*), te(*), dd(*)
c
common/fluid/gamma,gml, gpl,gmlg, gplg, ggml
c
data cv/4390./
c
mn=m*n
c
rcv=1./cv
rggml=1./ggml
coel=(gamma-1.0)*cv
coe2=gamma*(gamma-1.0)*cv
c
if(ivar.eq.1l)then
do 10 i=1,mn
dd(i)=td(1i)
10 continue
return
end if
c

if(ivar.eq.2)then

do 20 i=1,mn
rrho=1. /td(1i)
ul=tu(i)*rrho
vl=tv(i)*rrho

20

30

40

50

60

70

dd(i)=(te(i)*rrho-0.5%(ul*ul+vl*vl))*rcv

continue
return
end if

if(ivar.eq.3)then
do 30 i=1,mn
rrho=1./td(1i)
ul=tu(i)*rrho
vi=tv(i)*rrho
tl=(te(i)*rrho-0.5*(ul*ul+vl*vl))*rcv
dd(i)=td(i)*gml*cv*tl
continue
return
end if

if(ivar.eq.4)then
do 40 i=1,mn
rrho=1. /td (i)
ul=tu(i)*rrho
vl=tvy(i)*rrho
uv=ul*ul+vl*vyl
tl=(te(i)*rrho-0.5%uv)*rcv
cl=abs(tl*ggml*cv)
dd(1i)=sgrt(uv/cl)
continue
end if

if(ivar.eq.5)then
do 50 i=1,mn
rrho=1. /td(1i)
ul=tu(i)*rrho
vl=tv(i)*rrho
tl=(te(i)*rrho-0.5*%(ul*ul+vi*vl))*rcv
pl=td(i)*gml*cv*tl
dd(i)=log(tl**rggml/pl)
continue
end if

if(ivar.eq.6)then
do 60 4i=1,mn
uv=tu(i)*tu(i)+tv(i)*tv(i)
dd(1)=0.5*uv/td (i)
continue
end if

if(ivar.eq.7)then
do 70 1i=1,mn
rrho=1./td(1i)
ul=tu(i)*rrho
vi=tv(i)*rrho
tl=(te(i)*rrho-0.5%(ul*ul+vli*vl))*rcv
pl=td(i)*gml*cv*tl
dd(i)=(te(i)+pl)*rrho
continue
end if

34

return

end
C**

subroutine gridxy(x,y,m,n,is,ie, js, je,iflaqg)

c
dimension x(m,n),y(m,n)
c
common /maping/ scalex, ofsetx, scaley, ofsety, scaled,
real scalex, ofsetx, scaley, ofsety, scaled,
c
dimension ix(4),iy(4)
c
c iflag=0 draw the boundaries only
c iflag=1 draw constant-i lines only
c iflag=2 draw constant-j lines only
c iflag=3 draw the entire gird
c
o] set grid line look up table (lut) index (color)
o]
call ufbcol(255)
c
c compute do loop end and increment
c
iil=ie-1
jil=je-1
ii=1
ji=1
c
c check to reset increments
c
if(iflag.eq.0.or.iflag.eq.1l) jj=je-js
if(iflag.eq.0.or.iflag.eq.2) ii=ie-is
c
c check to plot grid lines
c
if((iflag.ne.2).and.(ii.gt.0).and.(js.ne.je)) then
c
do 100 i=isg,ie,ii
do 100 j=js,jijl
c .
c convert world coordinates to screen coordinates
c
ix(1l)=scalex*x(1i,j)+ofsetx
ix(2)=scalex*x(i,j+1)+ofsetx
iy(l)=scaley*y(i,j)+ofsety
iy(2)=scaley*y(i,j+1)+ofsety
c
c plot grid line
c
call ufblin(ix(1),1iy(1),1ix(2),iy(2))
c
100 continue
c

endif

35

ofsetd
ofsetd

0

200

C

36

check to plot grid lines
if((iflag.ne.l).and.(jj.gt.0).and.(is.ne.ie)) then

do 200 j=js,je,jj
do 200 i=is,iil

convert world coordinates to screen coordinates
ix(l)=scalex*x(i ,j)+ofsetx
ix(2)=scalex*x(i+l,j)+ofsetx
iy(l)=scaley*y(i ,j)+ofsety
iy(2)=scaley*y(i+l, j)+ofsety
plot grid line
call ufblin(ix(1),iy(1),ix(2),iy(2))

continue

endif

return
end

Chhhhhdhkdkdkhhhhkkkhkhhhhhhhhhkhhkdhhhhhhhhhkkh bk hkkhdddkk b hhkhkkdkddhkrh

C

C
C
C

subroutine linmap(al,a2,bl,b2,cl,c2)
compute scale factor and offset

if(a2.ne.al) then
cl=(b2-bl)/(a2-al)
c2=bl - cl*al + .5

else
cl=0.
c2=(bl+b2)*0.5

end if

return

end

Chhhdkdkddhdhhhhdhhhhkhkhhhhhhhhkdhdhhhhhhhhkhkhhhkkdkkkkdhhhdhhdkhdkkkhk kA k ok k kK kkkk

LE R R

subroutine plotd(x,y,q,d,m,n,ivar,is,je, js, je,nc,sides,
id,idmin, idmax,it,if1aqg)

dimension x(m,n),y(m,n),q(m,n,4),d(m,n)

common /extrem/ xmin, xmax, ymin, ymax, dmin, dmax
real xmin, Xmax, ymin, ymax, dmin, dmax

common /maping/ scalex, ofsetx, scaley, ofsety, scaled, ofsetd
real scalex, ofsetx, scaley, ofsety, scaled, ofsetd

common/fluid/gamma, gml, gpl,gmlg, gplg, ggml

real idmin, idmax

Q

Oa0a0a

anoaoaaoaaacnanaa

aaan

an0nan

Q00

Qaaaqn

save 0O

37

dmin, odmax

data gamma,odmin,odmax/1.4,+1e30,—1e30/

contour p
written b

gml=ga
gpl=ga

lot
Y: Eric L. Everton & Jamshid S. Abolhassani

mma-1.
mma+1l.

gamlg=gml/gamma

gplg=g
ggml=qg

ivar=0

NON D WN

if (it
com

cal
cal

com
X a

yov
ara
bra

che

if

end
che

if

pl/gamma
amma*gml

write out the grid
density
temperature
pressure

mach number
entropy

dynamic pressure
total enthalpy

————— scaling the grid & flow variables
.eq.0) then
pute x and y minimums and maximums

1 fminmax(x.xmin,xmax,is.1e.js,je.m,n,0)
1 fminmax(y,ymin,ymax,is.1e.js,je,m,n,0)

pute aspect ratio and
nd y ranges

erx=1024. /1280.
nge=xmax-xmin
nge=ymax-ymin

ck for zero ranges

((arange.eq.O.).or.(brange.eq.O.)) then

a range is zero
issue an error message and stop

write(*,*) “xmin - xmax or ymin - ymax eq O°
stop

if

ck aspect ratio with range ratio

(brange/arange.gt.yoverx) then

adjust xmin and xmax
recompute range

Q

aaoaan

Q

hafdif= .5 * (brange/yoverx - arange)
xmin =xmin-hafdif

Xmax =xmax+hafdif

arange=xmax-xmin

else

adjust ymin and ymax
recompute range

hafdif= .5 * (arange*yoverx - brange)
ymin =ymin-hafdif

ymax =ymax+hafdif

brange=ymax-ymin

endif

add border

xmin=xmin - sides*arange
xmax=xmax + sides*arange
ymin=ymin - sides*brange
ymax=ymax + sides*brange

compute scale and offset for x and y

call linmap(xmin,xmax,o.,1279..scalex,ofsetx)
call linmap(ymin.ymax,o..1023..scaley,ofsety)

endif

get d variable

call getf(CI(l,l.1).q(1,1.2).q(1.1,3),q(1,1.4),d,m,n.ivar)
compute d minimum and maximum

call fminmax(d, cdmin, cdmax, is, ie js,je,m,n,0)

idflag=1

if(cdmin.eq.cdmax) idflag=0

save overall d minimum and maximum

if (cdmin.lt.odmin) odmin=cdmin
if (cdmax.gt.odmax) odmax=cdmax

check to use current d minimum and max{imum
if (id.eq.0) then
set dmin and dmax to current

dmin=cdmin
dmax=cdmax

o]

else
set dmin and dmax to input

dmin=idmin
dmax=idmax

endif
compute scale and offset for d

if(idflag.eq.1)

1 call linmap(dmin,dmax,Z.,ZSS..scaled,ofsetd)

write current, overall & used d minimums and maximums

write(62,*) ° current dmin & dmax
write(62,*) ° overall dmin & dmax
write(62, %)

*

used dmin & dmax ",

clear frame buffer

call ufbcle

write frame number

write(62,*) " Plotting frame number °,it
plot contours

if(idflag.eq.1)

cdmin,
odmin,
dmin,

cdmax
odmax
dmax

1 call conplt(x,y,d,m,n,is,ie, js,je,2.,255.,nc)

plot grid lines

call gridxy(x,y,m,n,is,ie, js,je,iflaqg)
send frame buffer to display

call ufbwri

return
end

39

